Truly Meshless Local Petrov-Galerkin (MLPG) Solutions of Traction & Displacement BIEs

نویسندگان

  • Z. D. Han
  • S. N. Atluri
چکیده

The numerical implementation of the truly Meshless Local Petrov-Galerkin (MLPG) type weakforms of the displacement and traction boundary integral equations is presented, for solids undergoing small deformations. In the accompanying part I of this paper, the general MLPG/BIE weak-forms were presented [Atluri, Han and Shen (2003)]. The MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradients of the displacements of the fundamental solutions [Okada, Rajiyah, and Atluri (1989a,b)]. By employing the various types of test functions, in the MLPG-type weak-forms of the non-hypersingular dBIE and tBIE over the local sub-boundary surfaces, several types of MLPG/BIEs are formulated, while also using several types of non-element meshless interpolations for trial functions over the surface of the solid. Specifically, three types of MLPG/BIEs are formulated in that paper, i.e. MLPG/BIE1, MLPG/BIE2, and MLPG/BIE6, as per the consistent categorizations of the MLPG domain methods [Atluri and Shen (2002a)]. As the accompanying part II, this paper is devoted to MLPG/BIE6. In particular, the moving least squares (MLS) method has been extended for the approximation on three dimensional surfaces, which makes it possible for the MLPG/BIE methods to be truly meshless. Numerical examples, including crack problems, are presented to demonstrate that the present methods are very promising, especially for solving the elastic problems in which the singularities in displacements, strains, and stresses, are of primary concern. keyword: Meshless Local Petrov-Galerkin approach (MLPG), Boundary Integral Equations (BIE), Non1 Center for Aerospace Research & Education University of California, Irvine 5251 California Avenue, Suite 140 Irvine, CA, 92612, USA Hypersingular dBIE/tBIE, Moving Least Squares (MLS), MLPG/BIE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving the Weakly-Singular Traction & Displacement Boundary Integral Equations

The general Meshless Local PetrovGalerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. These MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs [given in Han, and Atluri (2003)], which are simply derived by using the gradie...

متن کامل

Mlpg Methods for Discretizing Weakly Singular Bies

The general Meshless Local Petrov-Galerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. Using the directly derived non-hyper singular integral equations for displacement gradients, simple and straight-forward derivations of weakly singular traction BIE's for solids undergoing small deformations are als...

متن کامل

Axial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method

In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...

متن کامل

Optimization of Meshless Local Petrov-Galerkin Parameters using Genetic Algorithm for 3D Elasto-static Problems (TECHNICAL NOTE)

A truly Meshless Local Petrov-Galerkin (MLPG) method is developed for solving 3D elasto-static problems. Using the general MLPG concept, this method is derived through the local weak forms of the equilibrium equations, by using a test function, namely, the Heaviside step function. The Moving Least Squares (MLS) are chosen to construct the shape functions. The penalty approach is used to impose ...

متن کامل

Optimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method

Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003